DARPA’s TRAnsformative DESign (TRADES) program, which began in 2017, set out to develop foundational design tools needed to explore the vast space opened by new materials and additive manufacturing processes commonly called 3D printing. The program recently concluded having successfully developed new mathematics and computational techniques, including artificial intelligence and machine learning, that will allow future designers to create previously unimaginable shapes and structures of interest to defense and commercial manufacturing.
Manufacturing technology breakthroughs in recent years, such as 3D printing, have allowed precise material placement, new material behaviors, and complex shaping of parts and structures. Design tools, however, have not kept up with complexity of the design space resulting from these advances.
“In the past four years, TRADES has explored new ideas from mathematics and computer science that have allowed us to now represent things – like parts and components – that are a million times more complex than current state-of-the-art systems can represent,” said Jan Vandenbrande, program manager in DARPA’s Defense Sciences Office. “We can now describe both shape and material in a coordinated way across multiple physics to allow intricate designs and to understand properties at every point on the produced part. The aim is to be able to mimic integrated hierarchical structures found in nature, where different sized structures respond to different types of physics.”