Recovering Data: NIST’s Neural Network Model Finds Small Objects in Dense Images

In efforts to automatically capture important data from scientific papers, computer scientists at the National Institute of Standards and Technology (NIST) have developed a method to accurately detect small, geometric objects such as triangles within dense, low-quality plots contained in image data. Employing a neural network approach designed to detect patterns, the NIST model has many possible applications in modern life.

NIST’s neural network model captured 97% of objects in a defined set of test images, locating the objects’ centers to within a few pixels of manually selected locations.

“The purpose of the project was to recover the lost data in journal articles,” NIST computer scientist Adele Peskin explained. “But the study of small, dense object detection has a lot of other applications. Object detection is used in a wide range of image analyses, self-driving cars, machine inspections, and so on, for which small, dense objects are particularly hard to locate and separate.”

Read more